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Abstract. Randomly quenched impurities pin the modulation wave of incommensurate (I) 
structures and prevent its free motion. However. rapid thermal Ructuations reduce the pinning 
frequency (or. in the case of mcturally incommensurate insulators (sus) the p h o n  gdp A*), 
and they have a significmc effect on lhe spin-lattice relaxation time and the NhlR and NQR 
lineshapes. A Tl and lineshape model is developed for the I phase of sus. This model, which 
includes impurity pinning and thermal fluctuations, is used to explain 35C1(1) TI and experimental 
lineshape data for a pure Rb$3Ch crystal. The results indicate that. while the impuitia are 
of a shvng-pinning symmehy-breaking type very close lo the p~leclric-to-inwmmensurate 
vansition temperature E ,  thermal Ructuations significantly reduced fhe impurily-induced pinning. 

1. Introduction 

A collective phenomenon common to many modulated systems is the motion of the 
modulation wave under the influence of thermal fluctuations (random motion), andfor 
external force coupled to the order parameter (oriented motion). Examples of such systems 
are structurally incommensurate insulators (SIIs) (Blinc et al 1982, 1983, 1984, Kogoj et 
a1 1984), charge-density-wave (CDW) systems (Fukuyama 1976, Lee and Rice 1979) and, 
in close similarity to them, flux line lattices (FLLs) in conventional (type E) and high- 
Tc superconductors (Nattermann 1990, Yeshurun and Malozemoff 1988). Other collective 
transport phenomena which are driven by a similar mechanism are the motion of the interface 
between two fluids in porous media (Bruinsma and Aeppli 1984, Stokes et al 1986), 
and the motion of domain walls in disordered magnets villain 1984). Clearly thermal 
fluctuations and impurity pinning are important factors which influence both random and 
oriented collective motions: thus understanding their contribution to the pinning-depinning 
mechanism of the modulation wave in simple systems such as one-dimensional SIB, would 
be helpful in understanding collective motion in more complex systems. 

The possible existence of a gapless phason (Goldstone) mode, which corresponds to 
the fluctuations of the phase of the modulation wave, is predicted by the continuum model 
theory of the I phases (Bruce and Cowley 1978). However. in real I stmctures the free 
motion of the modulation wave is prohibited, either by pinning to the discrete lattice (Bruce 
1983, Papavassiliou et ~l 1991a), or by pinning to the randomly distributed impurities 
(Prelovsek 1988). This factor induces a finite gap AV in the phason spectrum. In such case, 
depinning effects should be initiated only by thermal fluctuations or external forces. 

In SIB the phason gap AV has been experimentally verified to lie within the frequency 
range AV 2 1010-10’2 s-l (Blinc ef al 1986b). Contrary to these observations, the 

0953-8984/93/SO9295tI~O7.S0 @ 1993 IOP Publishing Ltd 9295 



9296 G Papavassiliou et a1 

incommensurate phase II of biphenyl shows a nearly gapless phason mode (Cailleau 1986). 
Recently, NMR (Blinc et al 1982, 1983, 1984, Kogoj et al  1984), NQR (Milia et al  
1984, Papavassiliou et a1 1991b) and EPR (Kaziba and Fayet 1986) experiments reported 
unexpected deviations in the frequency lineshape and in TI (the spin-lattice relaxation 
time) behaviour close to the transition temperature TI. These effects could be attributed to 
thermally induced fluctuations of the phase of the modulation wave. On the other hand, the 
application of an external force leads to the appearance of new effects, such as the thermally 
assisted flux motion and flux creep of FLU in high-T, superconductors &an et al 1991), 
and phase creep in CDWS (Segransan et al  1986, McCarten et a1 1991). 

A critical role in all these kinetic effects seems to be played by the kinds of impurity 
and the impurity pinning. Randomly quenched impurities generally tend to destroy the 
long-range order by creating a random field which, in the case of sns is coupled to the local 
soft mode (Prelovsek 1988). The range of this short-range order seems to be too large to be 
directly observed by conventional neutron scattering and x-ray spectroscopy. At the same 
time the impurities induce random changes in the interaction constants which would alter 
TI. It is not yet clear which effect dominates: the creation of random field or the change in 
the random constants. 

Another point is to consider the pinning of the modulation wave on the impurities 
(Fukuyama and Lee 1978, Prelovsek 1988); strong pinning or weak pinning should lead to 
totally different behaviours. In the case of strong pinning, the impurity potential is locally 
maximized, and any one impurity can pin the modulation wave. In the case of weak pinning, 
no single impurity can pin the modulation wave, but rather a large number of impurities 
collectively enable pinning to occur. 

In this paper a model is developed which takes into consideration the influence of the 
thermal Auctuations, the different kinds of impurity and the impurity pinning on the phason- 
induced spin-lattice relaxation time TI,+. In an effort to understand the role of the thermal 
fluctuations and the impurities in the collective motion of condensed structures, this model 
is used in combination with lineshape calculations, to interpret the 35Cl(l) NQR T, relaxation 
time and frequency linewidth data of a pure RbzZnCI4 crystal. 

2. Theory 

2.1, TJ model 

In the case of a SI1 and a pinned modulation wave, the displacement of a nucleus from its 
position in the paraphase can be described as 

U(?-, t )  = Uocos(qs . r) + 6u(r, t )  (1) 

where qs is the wavevector of the 1 modulation, ug is the amplitude of the modulation wave 
given by ug rx (8 - T)B, and p is the critical exponent of the amplitude of the I 
modulation wave, which is in agreement with the d = 3, n = 2 Heisenberg model (Bruce 
and Cowley 1978). The inclusion of thermal fluctuation is described in equation ( I )  by 
the very small, rapidly fluctuating part Su(r, t ) .  By decomposing this term into a phase- 
fluctuating term and an amplitude-fluctuating term, one obtains the familiar expression for 
the spin-lattice relaxation rate in I systems (Blinc et al 1986b): 

T;' CY fa cos*(q, . r) + J,+ sin2(qs . T I .  (2) 
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JA and Jv are the spectral densities for the amplitude and phase fluctuations which in the 
plane-wave model limit are given by Blinc eta1 (1986b) 

JJ = Cr,/Ap = q3 A .  (3) 

Here, C is a constant proportional to the square of the fluctuating electric-field-gradient 
tensor components, A6 is the phason-amplitudon energy gap and rp are the corresponding 
damping constants. The contributions of the amplitudon and phason fluctuations are thus, 
according to equation (2), 90" out of phase. If we take into consideration that the NMR 
and NQR frequency spectra of I systems are inhomogeneously distributed between two edge 
singulatities, as given by 

u ( 4 . t )  = uo+or*uocos(q , .T)+or~u~cos~(q ,  . T )  (4) 

the phason contributions to the relaxation mechanism can be monitored at the positions of the 
spectra which are relaxing via a pure phason mechanism, corresponding to cos(q,. T )  = 0, 
whereas the amplitudon contributions can be monitored at the positions which are relaxing 
via a pure amplitudon mechanism, i.e. where sin(q, . T )  = 0. 

Recent experimental and theoretical work on both the impurity (Blinc er al 1986a) 
and the discrete lattice pinning (Papavassiliou et al 1991a), have shown that the phason 
gap Ar, close to TI, is proportional to a relatively high power of the amplitude of the 
modulation wave ug and thus to the temperature (ug rz - T as referred to before). In the 
weak-impurity-pinning case for example, 

Av c( IG - T16(n-2) (5) 

while, in the discrete-latticepinning case, 

VD c( [q - T/B@-*) exp[-C/(E - T)'P] .  (6) 

Here n is the commensurability index, equal to the number of commensurate regions of the 
modulation wave with a phase equal to 2z/n (in the case of Rb2ZnCh which we study 
below, n = 6). 

One may thus expect that, since AVD decreases rapidly close to E ,  the thermally induced 
phase fluctuations play a significant role close to T,. As a consequence, equation (1) is 
no longer a valid approximation, and the complete expression for the nuclear displacement 
must be used (Bruce and Cowley 1978): 

U(?, t )  = [w + %(T, r)l cos[q, . T + S@(r, 01. (7) 

The influence of the phase fluctuations of the modulation wave on the NMR and NQR 
frequency lineshapes has been evaluated for several models of the motion of the modulation 
wave (Blinc et a1 1983, Kogoj et al 1984). A reasonable model is that phase fluctuations 
can be represented by standing waves within an average coherence volume V, (Blinc et a1 
1982, 1984): 
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The coherence volume V, must be defined differently in extreme cases of strong and 
weak pinning. In the strong-pinning regime, where the modulation wave can be assumed 
to be pinned by very strong impurities, and where the phase of the modulation wave in 
each segment between the pinning centra can fluctuate freely, the wave behaves much like 
a string with fixed ends. In this case, the coherence volume V, is defined as V, N l / q .  
In the second case, i.e. the weak-pinning regime, the system is assumed to separate into 
domains (Fuhyama and Lee 1978). Within each of these domains the impurity-induced 
phase distortion varies slowly, while it takes random values in different domains. This 
allows us to consider that the phase of the modulation wave is still fluctuating freely within 
each domain, and to identify the coherence volume Vc with the domain volume. Here 
(unlike the strong-pinning regime), V, proves to be temperature dependent, according to the 
relation V, 2: [ I / ( ~ ? " - ~ n i ) ] ~  (Prelovsek 1988). 

Taking the above into consideration, the phason-induced spin-lattice relaxation time 
TI;' can be calculated from 

*m 

where J,(w) is the spectral density of the phason-induced thermal fluctuations, and 

Gp(t) = u , Z ( C O S I ~ ~  . T + S @ ( T ,  O)]  COS[^, . T + S @ ( T ,  t ) ] ) .  (10) 

In a way similar to that discussed for equation (2), at the positions of a spectrum where 
cos(q, . T) = 0 the excited 35Cl(l) nuclei are still relaxing via a pure phason mechanism, 
and the autoconelation function G,(t)  is for those spectral positions given by 

G,(O = &sin[s@(T, O)I sin[S@(T, 01) = $u$U(expW@(r, 0) - M r ,  2)1)) 
- (exp[i[W(T, 0) + W r .  011) t ccll. (11) 

Using the Gaussian-averaging theorem (Baeriswyl and Bishop 1980) we obtain, after 
separating the diagonal terms, 

G&) = $@exp{-$([J@(T, 0) - WT, t)lz)l - exp(-a([S@(r,O) + S @ ( T ,  r ) I2))J  
= j$exP[-4{(8'@(T3 0)) + (s2d(r,  t)))l{exp[(%++, o ) ~ @ ( T ,  t ) ) ~  

- exp[-(W(r, O)Wr, NI) (12) 

where we can define (S'@(T,  0)) and (S2@(r, I)) with the help of (8) as 

From (12) we observe that the autocorrelation function decays to zero (as it should do) 
for t + CO, because the term exp[(S@(r, 0) a@(?-, t ) ) ]  - exp[-(d@(r, 0) S @ ( T ,  t ) ) ]  -+ 0 
when (86(t)S@(O)) -+ 0. The last step of equation (13) has been calculated by applying 
the equipartition theorem after summing over all nuclei (Blinc etal 1984). If we take into 
consideration that (Blinc 1986b) 

w& = A i  + K k Z  

IC = q - qs K = constant 



Impuriry pinning in incommenrurate modulated structures 9299 

we obtain, by replacing the summation over k by an integration up to a cut-off frequency 
A> 

E (  T) = [Av( T)/KI/’A] tan-’ [K”’A/A,( T)]. (15) 

Equation (13) can be put, with the help of equations (14) and (15). in the more convenient 
form 

(SZ@(r, 0)) = (SZ@(r,  1)) = a(T)/V,u; (16) 

where the parameter a(T) cx 1 - E ( T )  is a measure of the influence of the thermal 
fluctuations. In the case where thermal fluctuations play a significant role, and the phason 
gap is small, the thermal-fluctuations parameter a(T) # 0. However, in the case of very 
small thermal fluctuations and high A,-values (A, >> K*/’A) we obtain zk l /w& N 0 and 
thus a(T) = 0. 

G,(t) = f~~exp[-cu(T)/V,u~l(exp[(G6(~, O ) W ( T ,  t))l - expI-(S@(T,O)W(T, 0)lJ.  

Equation (12) thus becomes 

(17) 

If we expand the term in curly brackets we obtain a series of n-phason contributions. 
However, by assuming a high damping constant rr for the phason mode, we can examine 
the one-phonon contribution, so that 

G&) = U; exp[-cu(T)/V,u~I(S@(r, 0) W ( r ,  0). (18) 

The multi-phason contributions should only introduce small corrections which can be 
neglected. This assumption is indeed experimentally justified. Inelastic neutron-scattering 
experiments in KzSe04, for example, have been consistently interpreted by considering 
a value T, N 3 x IO” s-I (Kaziba and Fayet 1986). The phason-induced spin-lattice 
relaxation rate TG’ thus becomes 

where we have assumed that the phase fluctuations are uncorrelated for different k-values 
so that (86(r, 0) &@(r, 2)) = r k ( a @ k ( T ,  0) 66k(T, I ) ) .  

Using the classical fluctuation4issipation theorem we obtain 

If we describe the susceptibilities by damped harmonic oscilIator-type susceptibilities (Blinc 
et a1 1986b3, i.e. 

$(t, W )  = r,wj(W2 - w ; , ) ~  + rid (21) 
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we obtain in the plane-wave limit, after replacing the summation over k by an integration 
over half the Brillouin zone, 

l/T;? ct uiexp(-a/V,ui)A;'. (22) 

In the case of small thermal fluctuations a ( T )  N 0 we obtain the well known phason-induced 
relaxation rate (the phason part of equation (2)). 

Equation (22) indicates that Er is influenced by the additional temperature dependence 
of the phason gap A?. The dynamics of the phason mode have been studied by Okabe and 
Fukuyama (1976), using the impurity-averaged phase mode Green function D(q:  iw). The 
standard treatment of the problem is to introduce the self-energy function so that 

D(q: iw) = [+pu&* t c2q2) - r,(t)i . (23) 

where rI ( t )  is the self-energy function in its lowest-order approximation (Prelovsek 1988). 
Equation (23) implies a pole at frequency o = [ 2 r , ( t ) / p ~ i ] ' / ~  which is defined as the 
phason gap Aq. 

The self-energy function is found to be equal to (Prelovsek 1988) 

where U is the impurity-potential strength and S$imp(~)  is the impurity-induced phase 
deviation. In the case of random interactions, m = n whereas, in the case of random fields, 
m < n (Prelovsek 1988); here m represents the symmetry properties of the impurities 
relative to the symmetry of the n-domain commensurate (C) phase. When m = n,  the 
impurities will not break the symmetry of the c phase (random interactions) while, when 
m < n they will discriminate between the n possible c domains (random fields). 

The key assumption in introducing thermal fluctuations in the phason gap is that, in a 
way similar to the calculations in equation (1 I), and using also here the Gaussian averaging 
theorem, the self-energy rl(t) should be replaced by 

Here we have as before assumed that the phase fluctuations are uncorrelated for different 
k-values. Equation (25) is in accordance with other approximations (see, e.g., Okabe 
and Fukuyama (1976) and Maki (1986)) where the influence of thermal fluctuations 
is incorporated by applying the self-consistent field approximation to the effective 
Hamiltonians. 

When these assumptions are taken into consideration and equations (13) and (16) are 
used, A? proves to be 

where, in the weak-pinning regime (Prelovsek 1988), 
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(TI-T) (arbi t rary uni ts)  
Figure 1. The p h o n  gap Alp as a function of tempemure close to p :  (a) in the weak-pinning 
limit; (b) in the strong-pinning limit, The inset exhibits the function s(T) (equation (15)) for 
m = 1 in the weak-pinning limit. 

and, in the strong-pinning regime, 

Am muo ni . ( m - 2 ) / 2  113 

The phason gap A, versus T very close to the transition temperature 4 is shown in 
figures I(a) and I(b). The parameter 01 is considered, as explained below, to be temperature 
independen6 thus giving a slight modification of the A,(?') curves. 

for all m-values. What thermal fluctuations really 
influence is the strength of the impurity potential at all impurity sites. This is best seen in 
the m = 1 case (weak-pinning limit) where, by omitting thermal fluctuations, A, + 00 

as T -+ TI. However, the coherence volume V, + 0 as T + 6, so that the thermal 
fluctuations have a diverging amplitude & + a3 (Blic  et al 1982, 1984), thus forcing 
the impurity potential strength U and the phason gap A, to go to zero. By lowering the 
temperature we observe a different behaviour of A, versus T for different kinds of pinning 

We observe that A, --t 0 as T + 
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and different m-values. What is remarkable is that, by studying the limiting behaviour of 
equation (26), we observe the existence of cases (m = 1 i n  both the strong- and the weak- 
pinning limits, and m > 2 in the weak-pinning limit) where, after reaching a maximum, 
A+, decreases with decreasing temperature. However, one should expect such effects to 
he extremely difficult to observe experimentally; deeper inside the 1 phase, discretelattice 
pinning effects dominate, thus masking impurity-induced pinning effects (Papavassiliou el 
a1 1991a). In all cases, A, versus fi  - T increases rapidly very close to f i ,  within a 
few tenths of 1 "C. After this small temperature interval, the thermal-fluctuations parameter 
u(T) which is greatly reduced (but non-zero) can be assumed to be temperature independent. 
This approximation is permissible if we take into consideration that the variation in A, is 
smoothed out owing to the function E ( T )  (see inset of figure l(a)).  

(1) m = l  
(2) m=2 
( 3 )  m=3 
(4) m=6 

( 2 )  ':, 

2 2  1 0 

e 
a 
L ' Strong Pinning (b )  
a 
v 

9 
3 

& 

-.-----..__ 

3.0 

1.5 

0.0 

3.0 

1.5 

0.0 
2 1 0 

(TI-T) (arbitrary units) 
Figure 2. "be phason-induced spin-lattice relaxation time Ti, as a function of tempentinre very 
close to TI: (a)  in the weak-pinning limit; (b)  in the strong-pinning limit. 

In figures 2(u) and 2(b) we see the phason-induced spin-lattice relaxation time T19 
versus temperature, very close to fi  and for different impurities and pinning types. It is 
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assumed that, in this temperature region, thermally induced phase fluctuations significantly 
influence the phason mode (a # 0). The great differences between the plots for the different 
kinds of impurity and pinning indicate that TI ,  could be an excellent tool for the investigation 
of the pinning-depinning mechanism and the motion of the modulation wave under the 
influence of thermal fluctuations. 

In order to check the validity of our calculations, we performed high-temperature- 
resolution NQR spin-lattice relaxation time q measurements on a pure crystal of RbZnC14 
(n = 6) and compared the experimental data with the model. As the results must also 
be consistent with corresponding NMR and NQR lineshape calculations, the theory has been 
extended to the lineshape calculations versus T or the Cl(1) nucleus of RbzZnCI4. This 
lineshape model can be easily applied to other cases. 

2.2. Lineshape model 

The NQR frequency of the Cl(1) nuclear site of RbzZnC14, very close to E, depends 
quadratically on the I displacement (Papavassiliou et a1 1991b): 

U(@, t) = WO + wzcos% + S@(T, 01. (29) 

Here wz c( U;, @ is given by @ = ps . T and S@(r, t )  depends on time according to 
equation (8). We assumed that the amplitude fluctuations can, to a first approximation, 
be ignored, as they are very small in comparison with the phase fluctuations (Blinc et a1 
1984). 

The adiabatic NMR and NQR lineshapes are given by (Blinc et al 1983, Kogoj et al 
1984) 

+m 

f ( W )  = / Gf(t)exp(i2irwt)dt 21r ..m 

where G,(t)  is the autocorrelation function: 

By inserting equation (29) into equation (31), rewriting cos2[@ + Ck &&(T, t ) ]  as f[l + 
cos[2[@ + X I ,  S @ ~ ( T ,  t)])D and expanding the cos term into a Fourier series, in case of fast 
oscillations (wk/2naui >> 1). we obtain the following autocorrelation function: 

2n 

~ f ( t )  = d@exp[i2ntIu0 + + w z  + +w2 COS(2@)Jo(T)]}. (32) 

Here r = 2C,S@k(~ , t ) ,  and Jo(T)  is a zeroth-order Bessel function. Near to q the 
thermal-fluctuations parameter (Y takes. as already stated, a small value and J o ( T )  can be 
approximated by Jo(r) o( exp(-fr*) 0: exp(-(Y/V,u$, where r2 has been replaced by its 
average as obtained by equation (16). This last approximation is not valid infinitely close 
to q, where A, --t 0. 

Taking into consideration the above and equations (30) and (32) we obtain the following 
lineshape formula: 
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Figure 3. ((1) Temperature dependence of (a)  the CI(1) NQR frequency YQ and (b) the HHFW, 
close to TI for a pure RbzZnCla crystal. -, theoretical fit of equation (34) to the experimental 
data points for OL # 0; . . . . . ., fit for n = 0. For both n-values, m = 1 in the strongpinning 
regime. 

The half-height full width (HHF") L of the inhomogeneous I line is in that case given by 

L = u2 exp(-a/ SU;) + LO (34) 

where LO is the HWFW of the paraelectric line. 

reduces to the well known incommensurate static frequency distribution 
In the case of negligible thermal fluctuations, a = 0 so that JO = 1 and equation (33) 

f ( u )  = [(U - uo)(uz + !Ja - u)I-''Z. (35) 

3. Experimental details 

The pure crystal of RbzZnCl4 was prepared from an aqueous solution of RbCl and ZnClz in 
a 2: 1 molar ratio, and the method of repeated crystallization was used. Fourier-transformed 
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3sC1 NQR spin echo spectra were recorded of the C1( 1) nucleus, which lies on a mirror plane. 
TI was obtained by the inversion recovery spin-echo pulse sequence. Calibrated chromel- 
constantan thermocouples were used and temperature regulation provided a stability of better 
than 0.02 K over the measuring period. 

4. Results and discussion 

The temperature dependence of Cl(1) NQR frequency UQ in the vicinity of fi  is shown in 
figure 3(a). We observe that UQ slowly increases with decreasing temperature from 31 "C 
down to TI at 29°C. At f i ,  inhomogeneous broadening of the NQR line sets (figure 3(b)) 
which evolves in a way that can be explained only if we take into consideration the 
dominating role of thermal fluctuations. The full curve in figure 3(b) represents the 
theoretical fit of equation (34) to the experimental data by taking into consideration the 
influence of thermal fluctuations (a # 0). whereas the dotted curve corresponds to no 
thermal fluctuations (a = 0). Equation (34) gives an excellent fit to the experimental data if 
we consider that firstly a # 0 and symmetry-breaking impurities with m = 1 in the weak- 
pinning limit (in the case of RbzZnCl4 n = 6 (T'relovsek and Blinc 1984)) or secondly 
(Y # 0 and m < 6 in the strong-pinning limit. We may thus say that, in the temperature 
region very close to '& sbong thermal fluctuations exist, which motionally narrow the I NQR 
splitting. Under the condition that the two edge singularities are very close to each other, 
only a single line is observed. Thus it is clear that the change in the slope of the UQ versus 
T at T, (figure 3(a)) is a result of the shift in the centre of gravity of the NQR line from U,, 
towards U* + WO. The real f i  is not the temperature where the I split is observed (Blinc et 
al 1986b), but the temperature where the UQ line versus T changes slope. The temperature 
region between the broken vertical lines in figure 3 thus belongs to the I phase and not to 
the P phase as believed until now, 

4 

v - + 
2 

I J l  0 28 J 30 T ["Cl 32 3 4  

Figure 4. Temperature dependence of the phason-induced spin-lattice relaxation time TI,, 
dose to TI. for pure Rb$ZnCId: -, theoretical fit of equation (22) to the experimental 
points. 

very 
data 

In figure 4 we see TI experimental data as a function of temperature in both the P 
and I phases, very close to the transition temperature G. We observe that TI decreases on 
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approaching f i  from above, as expected for a spin-lattice relaxation mechanism dominated 
by soft-mode fluctuations. The interesting point is that TI continues to decrease with 
decreasing temperature below E .  Since only one frequency line is observed, it is not 
possible to separate the amplitudon and phason contributions to the relaxation mechanism, 
and the effective relaxation rate will be determined by the faster process, i.e. by the thermal 
phase fluctuations. In accordance with this, we try to fit the spin-lattice relaxation data to 
equation (22) (full curve in figure 4). In the case of RbZZnCh both m = 1 cases (symmetry- 
breaking impurities), in the weak- and strong-pinning regimes under the presence of thermal 
fluctuations, fit the experimental data quite well (figure 4). However, only the fit for m = 1 
in the strong-pinning regime gives comparable U-values for both the HHFw and the TI fi t .  

A combination thus of both NQR HHFW lineshape and TI measurements leads to the 
following conclusions. In pure RbzZnC14 and very close to z, thermally excited fluctuations 
of the phase of the modulation wave seem to play a predominant role in the motion 
(depinning effects) of the modulation wave. The small amount of impurities seem to be 
of strong-pinning and of the random-field type (with m = I), linearly coupled to the local 
soft-mode. 

A similar analysis could be equally well applied to CDW systems. Further experiments 
on both doped and pure crystals are needed to obtain a better understanding of the pinning- 
depinning mechanism. 
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